
10.12.21, 15:20 class Encoder – Quadrature Encoder for i.MXRT MCUs — MicroPython 1.17 documentation

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/mimxrt/machine.QECNT.html 1/7

class Encoder – Quadrature Encoder for i.MXRT
MCUs

This class provides the Quadrature Encoder Service.

Example usage:

Samples for Teensy

#

from machine import Pin, Encoder

qe = Encoder(0, Pin(0), Pin(1)) # create Quadrature Encoder object

qe.value() # get current counter values

qe.value(0) # Set value and cycles to 0

qe.init(cpc=128) # Specify 128 counts/cycle

qe.init(index=Pin(3)) # Specify Pin 3 as Index pulse input

qe.deinit() # turn off the Quadrature Encoder

qe.init(compare=64) # Set create a compare match event at count 64

qe.irq(qe.COMPARE, handler) # Call the function handler at a compare match

qe # show the Encoder object properties

Constructors

class machine.Encoder(id, input_a, input_b, *, keyword_arguments)

Construct and return a new quadrature encoder object using the following parameters:

id: The number of the Encoder. The range is board-specific, starting with
0.
For i.MX RT1015 and i.MX RT1021 based boards, this is 0..1, for i.MX
RT1052,
i.MX RT106x and i.MX RT11xx based boards it is 0..3.
input_a and input_b are the Quadrature encoder inputs, which are usually
machine.Pin objects, but a port may allow other values,
 like integers or
strings, which designate a Pin in the machine.PIN class.

Keyword arguments:

phase_a=value. A Pin specifier telling to which pin the phase a of the
encoder is connected. This is also a positional argument for the
constructor
and init() function.
phase_b=value. A Pin specifier telling to which pin the phase b of the
encoder is connected. This is also a positional argument for the
constructor
and init() function.
filter_ns=value. Specifies a ns-value for the minimal time a signal has to
be stable
at the input to be recognized. The code does the best effort to
configure the filter.
 The largest value is 20400 for the i.MXRT102x and
17000 for the i.MXRT105x/i.MXRT106x
 (1000000000 * 2550 * 4 /
CPU_CLK). A value of 0 sets the filter sets the filter off.
index=value. A Pin specifier telling to which pin the index pulse is
connected.
At a rising slope of the index pulse the position counter is set
to the init value
and the cycles counter in increased by one.

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/library/machine.Pin.html#machine-pin

10.12.21, 15:20 class Encoder – Quadrature Encoder for i.MXRT MCUs — MicroPython 1.17 documentation

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/mimxrt/machine.QECNT.html 2/7

home=value. A Pin specifier telling to which pin the home pulse is
connected.
At a rising slope of the home pulse the position counter is set
to the init
value, but the cycles counter is not changed.
match=value. A Pin specifier telling to which pin the match output is
connected.
 This output will have a high level as long as the position
counter matches the
 compare value. The signal is generated by the
encoder logic and requires no
further software support. The pulse width is
defined by the input signal frequency
and can be very short, like 20ns, or
stay, if the counter stops at the match position.
cpc=value. Specify the number of counts per cycle. Since the
 Encoder
counts all four phases of the input signal, the cpc value has to be four
time
the ppr value given in the encoder data sheet. The position counter will
count up
 from the 0 up to cpc - 1, and then reset to the init value and
increase
the cycles counter by one. The default is: no cpc set. In that case
the
 position counter overflows at 2**32 - 1. When counting down, the
cycles counter changes
at the transition from 0 to cpc - 1.
compare=value. Sets a position counter compare value. When the counter
matches
 this value, a callback function can called and the match output
will get a high level.
signed=False|True tells, whether the value return by Encoder.value() is
signed or
unsigned. The default is True.

The arguments phase_a, phase_b and filter are generic across ports, all other arguments are
port-specific.

Methods

Encoder.init(keyword_arguments)

Modify settings for the Encoder object. See the above constructor for details
 about the
parameters.

Encoder.deinit()

Stops the Encoder, disables interrupts and releases the resources used by the encoder. On
Soft Reset, all instances of Encoder and Counter are deinitialized.

value=Encoder.value([value])

Get or set the current position counter of the Encoder as signed or unsigned 32 bit integer,
depending on the signed=xxx keyword option of init().

With no arguments the actual position counter value is returned.

With a single value argument the position counter is set to that value and the
 cycles
counter is cleared. The methods returns the previous value.

cycles=Encoder.cycles([value])

Get or set the current cycles counter of the Encoder as signed 16 bit integer.

With no arguments the actual cycles counter value is returned.

10.12.21, 15:20 class Encoder – Quadrature Encoder for i.MXRT MCUs — MicroPython 1.17 documentation

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/mimxrt/machine.QECNT.html 3/7

With a single value argument the cycles counter is set to that value. The
position counter is
not changed. The methods returns the previous value.

If the value returned by Encoder.value() is unsigned,
the total position can be calculated as
cycles() * cpc + value().
If the total position range is still too small, you can create your own
cycles
counter using the irq() callback method.

Encoder.compare([value])

Get or set the position compare value.

With no arguments the actual compare value is returned. With a single value argument
the
compare value is set to that value.

Encoder.irq(trigger=event, handler=handler, hard=False)

Specifies, that the handler is called when the respective event happens.

event may be:
Encoder.COMPARE Triggered when the position counter matches the compare
value.
Encoder.ROLL_OVER Triggered when the position counter rolls over from the
highest
to the lowest value.
Encoder.ROLL_UNDER Triggered when the position counter rolls under from the
lowest
to the highest value.

The callback function handler receives a single argument, which is the Encoder object. All
events share the same callback. The event which triggers the callback can be identified
with the Encoder.status() method. The argument hard specifies, whether the callback is
called
as a hard interrupt or as regular scheduled function. Hard interrupts have always a
short latency,
 but are limited in that they must not allocate memory. Regular scheduled
functions are not limited
 in what can be used, but depending on the load of the device
execution may be delayed.
Under low load, the difference in latency is minor.

The default arguments values are trigger=0, handler=None, hard=False. The callback will
be
disabled, when called with handler=None.

The position match event is triggered as long as the position and compare value match.
Therefore the position match callback is run in a one-shot fashion, and has to be enabled
again when the position has changed.

Encoder.status()

Returns the event status flags of the recent handled Encoder interrupt as a bitmap.
The
assignment of events to the bits are:

0: Transition at the HOME signal. (*)
1: Transition at the INDEX signal. (*)
2: Watchdog event. (*)
3 or Encoder.COMPARE: Position match event.
4: Phase_A and Phase_B changed at the same time. (*)
5 or Encoder.ROLL_OVER: Roll-Over event of the position counter.
6 or Encoder.ROLL_UNDER: Roll-Under event of the position counter.
7: Direction of the last count. 1 for counting up, 0 for counting down.

10.12.21, 15:20 class Encoder – Quadrature Encoder for i.MXRT MCUs — MicroPython 1.17 documentation

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/mimxrt/machine.QECNT.html 4/7

(*) These flags are defined, but not (yet) enabled.

The Encoder was tested to work up to 25MHz on a Teensy. It may work at
higher frequencies
as well, but that was the limit of the test set-up.

class Counter– Signal counter for i.MXRT MCUs
This class provides a Counter service using the Quadrature Encoder module

Example usage:

Constructors

class machine.Counter(id, input, *, keyword_arguments)

Construct and return a new Counter object using the following parameters:

id: The number of the Counter. The range is board-specific, starting with 0.
For i.MX RT1015 and i.MX RT1021 based boards, this is 0..1, for i.MX
RT1052,
i.MX RT106x and i.MX RT11xx based boards it is 0..3.
input is the Counter input pin, which is usually a
machine.Pin object, but a
port may allow other values,
like integers or strings, which designate a Pin
in the machine.PIN class.

Keyword arguments:

input=value. A Pin specifier telling to which pin the input of the
counter is
connected. This is also a positional argument for the constructor
and init()
function.
direction=value. Specifying the direction of counting. Suitable values are:

Counter.UP: Count up, with a roll-over to 0 at 2**48-1.
Counter.DOWN: Count down, with a roll-under to 2**48-1 at 0.
a machine.Pin object. The level at that pin controls
 the counting
direction. Low: Count up, High: Count down.

filter_ns=value. Specifies a ns-value for the minimal time a signal has to
be stable
at the input to be recognized. The code does the best effort to
configure the filter.
 The largest value is 20400 for the i.MXRT102x and

Samples for Teensy

#

from machine import Pin, Counter

counter = Counter(0, Pin(0)) # create Counter object

counter.value() # get current counter value

counter.value(0) # Set the counter to 0

counter.init(cpc=128) # Specify 128 counts/cycle

counter.deinit() # turn off the Counter

counter.init(compare=1000) # Set create a compare match event at count 1000

counter.irq(Counter.COMPARE, handler) # Call the function handler at a compare match

counter # show the Counter object properties

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/library/machine.Pin.html#machine-pin
file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/library/machine.Pin.html#machine-pin

10.12.21, 15:20 class Encoder – Quadrature Encoder for i.MXRT MCUs — MicroPython 1.17 documentation

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/mimxrt/machine.QECNT.html 5/7

17000 for the i.MXRT105x/i.MXRT106x
 (1000000000 * 2550 * 4 /
CPU_CLK). A value of 0 sets the filter off.
match=value. A Pin specifier telling to which pin the match output is
connected.
This output will have a high level as long as the lower 32 bit of
the counter value
matches the compare value. The signal is generated by
the encoder logic and
requires no further software support.
cpc=value. Specify the number of counts per cycle.The counter will count
up
from the 0 up to cpc - 1, and then reset to 0 and increase
the cycles
counter by one. The default is: no cpc set. In that case the
 counter
overflows at 2**32 - 1. If the counting direction is DOWN, then the cycles
counter is decreased when counting from 0 to cpc-1.
compare=value. Sets counter compare value. When the counter matches
this value,
a callback function can called and the match output will get a
high level.
signed=False|True tells, whether the value returned by Counter.value() is
signed or
unsigned. The default is True.

The arguments input, direction and filter are generic across ports, all other arguments are port-
specific.

Methods

Counter.init(keyword_arguments)

Modify settings for the Counter object. See the above constructor for details
 about the
parameters.

Counter.deinit()

Stops the Counter, disables interrupts and releases the resources used by the encoder. On
Soft Reset, all instances of Encoder and Counter are deinitialized.

value=Counter.value([value])

Get or set the current event value of the Counter. The value is returned as a signed or
unsigned 32 bit integer, as defined with the signed=True/False option of init()

With a single value argument the counter is set to the lower 32 bits of that value,
and the
cycles counter to the bits 32-47 of the supplied number. The methods returns the
previous
value.

cycles=Counter.cycles([value])

Get or set the current cycles counter of the counter as signed 16 bit integer.
The value
represents the overflow or underflow events of the 32bit basic counter.
A total count can be
calculated as cycles() * 0x100000000 + value().
If the total count range is still too small, you
can create your own overflow
counter using the irq() callback method.

With no arguments the actual cycles counter value is returned.

With a single value argument the cycles counter is set to that value. The
base counter is
not changed. The methods returns the previous value.

Counter.compare([value])

10.12.21, 15:20 class Encoder – Quadrature Encoder for i.MXRT MCUs — MicroPython 1.17 documentation

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/mimxrt/machine.QECNT.html 6/7

Get or set the counter compare value.

With no arguments the actual compare value is returned. With a single value argument
the
compare value is set to that value. Note that only the lower 32 bit are significant.

Counter.irq(trigger=event, handler=handler, hard=False)

Specifies, that the handler is called when the respective event happens.

event may be:
Counter.COMPARE Triggered when the positions counter matches the compare
value.
Counter.ROLL_OVER Triggered when the position counter rolls over from the
highest
to the lowest value.
Counter.ROLL_UNDER Triggered when the position counter rolls under from the
lowest
to the highest value.

The callback function handler receives a single argument, which is the Counter object. All
events share the same callback. The event which triggers the callback can be identified
with the Counter.status() method. The argument hard specifies, whether the callback is
called
as a hard interrupt or as regular scheduled function. Hard interrupts have always a
short latency,
 but are limited in that they must not allocate memory. Regular scheduled
functions are not limited
 in what can be used, but depending on the load of the device
execution may be delayed.
Under low load, the difference in latency is minor.

The default arguments values are trigger=0, handler=None, hard=False. The callback will
be
disabled, when called with handler=None.

The counter match event is triggered as long as the lower 32 bit of the counter and
compare
value match. Therefore the counter match callback is run in a one-shot fashion,
and has to be enabled
again when the counter value has changed.

Counter.status()

Returns the event status flags of the recent handled Counter interrupt as a bitmap.
The
assignment of events to the bits are:

0: Transition at the HOME signal. (*)
1: Transition at the INDEX signal. (*)
2: Watchdog event. (*)
3 or Counter.COMPARE: Position match event.
4: Phase_A and Phase_B changed at the same time. (*)
5 or Counter.ROLL_OVER: Roll-Over event of the counter.
6 or Counter.ROLL_UNDER: Roll-Under event of the counter.
7: Direction of the last count. 1 for counting up, 0 for counting down.

(*) These flags are defined, but not (yet) enabled.

The counter was tested up to 25MHz. It may work at higher frequencies
as well, but that was
the limit of the test set-up.

Pin Assignment

10.12.21, 15:20 class Encoder – Quadrature Encoder for i.MXRT MCUs — MicroPython 1.17 documentation

file:///home/robert/Downloads/MicroPython/micropython/docs/build/html/mimxrt/machine.QECNT.html 7/7

Pins are specified in the same way as for the Pin class. The pins available for an
assignment to
the Encoder or Counter are:

IMXRT1010_EVK:

Not supported.

IMXRT1020_EVK:

Pins D0 and D1.

IMXRT1050_EVK, IMXRT1050_EVKB, IMXRT1060_EVK, IMXRT1064_EBK:

Pins D2, D4, D5, D8, D9, D10, D11, D12, D13, D14, D15, A4, A5.
Depending on the
board configuration, not all pins may be wired.
Pins D2, D4 and D5 cannot be used
for the match output.

IMXRT1170_EVK:

Pins D0, D1, D2.

D2 is connected to the 1G PHY chip as well. So levels may be distorted.

Teensy 4.0:

Pins 0, 1, 2, 3, 4, 5, 7, 8, 26, 27, 30, 31, 32, 33. Pin 0 and 5 share the
same signal
and cannot be used independently.
Pins 26, 27, 30 and 31 cannot be used for the
match output.

Teensy 4.1:

Pins 0, 1, 2, 3, 4, 5, 7, 8, 26, 27, 30, 31, 32, 33, 37, 42, 43, 44, 45, 46 and 47.
Pins
26, 27, 30 and 31 cannot be used for the match output.
Some pins are assigned to
the same signal and cannot be used independently. These are:

Pin 0, 5 and 37,
Pin 2 and 43,
Pin 3 and 42, and
Pin 4 and 47.

Seeed ARCH MIX

Pins J3_14, J3_15, J4_19, J4_20, J5_15, J5_16, J5_17, J5_22, J5_23, J5_24,
J5_25 and J5_26.
Pins J3_14 and J3_15 cannot be used for the match output.

