
PyBoard Editor: Simple Onboard Editor for fast fixes

Recently I stumbled over PyBoard, purchased it, and started to work with it. It’s really nice, but the
sequence of developing code for it was a little by annoying. Yes, you can work in safe mode, but
editing the code on the board’s flash from the host was not reliable. Keeping and editing the code on
the host and copying it to the board works better, but you have to carefully wait for the files to be
sync’ed. If not, they may be corrupted. BTW: a jumper or switch that causes the board to boot in safe
mode by default would be nice. And not working in safe mode is even more cumbersome, because
you have to switch states, and yes, the interface number may change if you go through reset. I’m a
little bit nervous about pressing the switches bringing the board under mechanical stress all the time.
So I though, that having a simple editor on board which I could use for small fixes (like the line of
code that failed) would be nice. I made my way through the Micropython forum and found pfalkon’s
Python editor code, which I took and ported it to PyBoard. It’s really impressive how few lines of code
pfalkon needed to implement a reasonable amount of functionality. Since the code looked clean
enough, and it looks so easy to add features, I could not resist adding a little bit, and yes, it got FAT.
The file size increased by a factor of 3 (only some of that caused by commenting), and the footprint in
memory by a factor of 1,5 to 2 (now 12k), depending on what you keep. It still contains the code for
the Linux environment, so you can run it in Linux MicroPython (if you install the os module) or
Python3 for testing. I sprayed C Preprecessor statements in it, so you can use cpp to remove the stuff
which is not needed for PyBoard. So, what did I change and add:

 Use USB_VCP or UART for input and output.
 Changed the read keyboard function to comply with slow char-by-char input on serial lines.
 Added support for TAB, BACKTAB, SAVE, Find, Goto Line, Yank (delete line into buffer), Zap

(insert buffer)
 Join Lines by Delete char at the end, Autoindent for Enter
 Moved main into a function with some optional parameters
 Added a status line and single line prompts for Quit, Save, Find and Goto. The status line can

be turned (almost) off for slow connections.

The editor works in Insert mode. Cursor Keys, Home, End, PgUp and PgDn work as you would expect.
Most functions are available with Ctrl-Keys too, if a keyboard mapping is not available. Keyboard
Mapping:

Keys Alternative Function
Up Ctrl-K Move the cursor up one line
Down Ctrl-J Move the cursor down one line
Lef Ctrl-H Move the cursor lef by one char. The terminal should have the BACKSPACE

key defined as \x7f avoiding conflicts with Backspace
PgUp Ctrl-O Move the cursor up by one screen height
PgDn Ctrl-P Move the cursor down by one screen height
Home Ctrl-W Move the cursor towards the start of the line. If the cursor is on the right of

the first non-space, it moves to the first non-space, otherwise it moves to
the start of the line

End Ctrl-E Move to the End of the Line
Enter Insert a line break at the cursor position. Auto-indent is supported
Backspace Delete the char lef hand to the cursor. At the beginning of the line joins

with the previous line.

Del Ctrl-Y Delete char under cursor- If the cursor is at the end of the line, join the next
line. (Vi lovers might prefer Ctrl-X instead: just change KEYMAP)

Ctrl-Q Quit the editor or the line edit mode. If the edited text was changed, it will
prompt for confirmation.

Ctrl-S Save to file. The file name will be prompted. Saving to internal flash is really
slow, so be warned

Ctrl-F Find text. You may select between PyBoard style regular expressions or
simple search (see below). The search is not case sensitive. The last search
string is memorized. Search stops at the end.

Ctrl-N Repeat find starting at the column right to the cursor.
Ctrl-G Go to Line. The line number will be prompted.
Ctrl-B Go to last line (kind of obsolete, goto line 1 will do the same, but hey! Only

two lines of code and the key mapping)
Ctrl-T Go to first line (kind of obsolete, goto a huge line number will do the same)
Ctrl-X Ctrl-Del Delete Line and keep it. A sequence of these will keep all lines in the order

they were deleted. Any other key will start over the game.
Ctrl-V Insert the deleted lines before the actual line. Together with the Ctrl-X this

implements a very basic Cut & Paste feature, to be treated with care.
Tab Insert a tab, context sensitive. If lef hand to the first non-space, it shifs the

line to the right, such that the first non-space is at a tab position (the editor
targets Python code), and the cursor does not move. If at or afer the first
non-space, it inserts spaces at the cursor position up to the next tab
location, moving the cursor.

BackTab Ctrl-U Backtab, context sensitive If lef hand to the first non-space, it shifs the line
to the lef, such that the first non-space is at a tab position, and the cursor
does not move. If at or afer the first non-space, it remove spaces lef to the
cursor position up to the next tab location, if possible, and moving the
cursor.

Ctrl-A Toggles auto-indent
F2 F1 Help. Displays the file “pybe.hlp”, if present. Kind of obsolete.

The editor is contained in the file pybe.py. Start Pybe from the REPL prompt e.g. with

Import pybe
pybe.pybe([file [,content]])

Instead of giving a file name, you can supply a list of strings as the second (or optional) parameter
and supply an empty string instead. Pybe.pybe() will give you an empty screen to fill with your
thoughts. Optional parameters:

content=list The content to be edited is supplied in a list of strings. No type checking!.
The default is None

height=lines Screen height. The default is 24.
width=columns Screen width. The default is 80.
tabsize=x Tab step. The default is 4
status=True/False Toggle visibility of the status line (True/False). The default is True. But even

w/o status line, it is shown once afer Goto, Find, Save or any error message.

device=n Device to be used for screen/keyboard. 0 means USB_VCP. 1 means UART 1,
and so on. The default is 0 (USB_VCP).

baud=n Line’s baud rate. This setting is effective only for UART. The default is 38400

The file pybe.py is pretty large. As told, it contains C pre-processor statements allowing trimming it
down a little bit. For that reason, comments start with ## instead of #. So for PyBoard, you might run:

cpp–D PYBOARD –D DEFINES pybe.py >pe.py

That will result in a file with all functions supplied, but smaller footprint when loaded. The directive
DEFINES will replace symbolic key names with numeric constants, reducing the demand for symbol
space. You may strip down the file size (not the P-code footprint) by removing comments and empty
lines (that's what I do), e.g. by:

cpp -D PYBOARD -D DEFINES pybe.py | sed "s/#.*$//" | sed "/^$/d" >pe.py

Doing that will removes dead code like the one for the Linux environment

If the footprint is still too large, you may choose:

cpp -D BASIC -D PYBOARD -D DEFINES pybe.py | sed "s/#.*$//" | sed "/^$/d" >pe.py

That removes the code for Delete Line, Insert buffer, Tab, Backtab, Go to first Line, go to last line,
help, auto-indent toggle and find with regular expressions. There are still lines lef as “if sys.platform
== “pyboard”. If you do not like these, delete them manually.

Backup:

The keyboard mapping assumes VT100. For those interested, I collected a the key codes issue by
terminal emulators, all claiming VT100:

Key Putty VT100
& Xterm

Putty esc-
[~

Putty
Linux

Minicom GtkTerm Picocom Linux
Terminal

Up \e[A \e[A \e[A \e[A \e[A \e[A \e[A
Down \e[B \e[B \e[B \e[B \e[B \e[B \e[B
Lef \e[D \e[D \e[D \e[D \e[D \e[D \e[D
Right \e[C \e[C \e[C \e[C \e[C \e[C \e[C
Home \e[1~ \e[1~ \e[1~ \e[1~ \eOH \eOH \e[H
End \e[4~ \e[4~ \e[4~ \eOF \eOF \eOF \e[F
Ins \e[2~ \e[2~ \e[2~ \e[2~ \e[2~ \e[2~ \e[2~
Del \e[3~ \e[3~ \e[3~ \e[3~ \e[3~ \e[3~ \e[3~
PgUp \e[5~ \e[5~ \e[5~ \e[5~ \e[5~ \e[5~ \e[5~
PgDn \e[6~ \e[6~ \e[6~ \e[6~ \e[6~ \e[6~ \e[6~
Backspace \x7f \x7f \x7f \x7f \x08 \x7f \x7f
Ctrl-Home \e[1;5H \e[1;5H \e[1;5H
Ctrl-End \e[1;5H \e[1;5F \e[1;5F
Ctrl-Del \e[3;5~ \e[3;5~ \e[3;5~ \e[3;5~
Tab \x09 \x09 \x09 \x09 \x09 \x09 \x09
BackTab \e[Z \e[Z \e[Z \e[Z \e[Z \e[Z \e[Z
F1 \eOP \e[11~ \e[[A -- Calls Linux Terminal Help
F2 \eOQ \e[12~ \e[[B \eOQ \eOQ \eOQ \eOQ

Picocom seems sometimes to send the Linux Terminal codes. Nevertheless, I’m using it most of the
times. If the KEYMAP is too large, and you know which terminal you are working on, delete or
comment out the obsolete lines. If your terminal is different, just change the control codes.

Notes:

• I have a few numbers showing the footprint of the code in memory afer importing it, as
shown by pyb.info(). The numbers vary a little bit:

15552 pybe.py full code, including the dead Linux code and junkyard
13200 pybe.py w/o Linux, w/o KEY-names (-D PYBOARD -D DEFINES)
12240 minimal w/o Tab/BT/Yank/Zap, KEY-names (-D PYBOARD -D DEFINES -D BASIC)

(10.9k)

For comparison: pfalkon’s editor.py has a footprint of about 7952 (not ported to PyBoard, just
loaded).

• For those who wonder why sending data to the screen on pyboard is more than a simple
write(): for USB_VCP, it stumbles over a large amount of data to be sent in short time. The
diference is, that USB.write() waits internally until all has been sent, whereas USB_VCP.write()
stops when it cannot send more data. So we have to see what's coming back. And, b.t.w.
UART.write() not like empty strings, which in turn is accepted by USB_VCP.write().

• For Delete Line/Insert Line the kye mapping is now Ctr-X/Ctrl-V. I played a while with Ctr-
Y/Ctrl-Z, which is also kind of natural. And it keeps Ctrl-X free for Delete Char.

• Ctrl-H is mapped to cursor lef. There are terminal who have the backspace key mapped to
Ctrl-H. For these, you may change KEYMAP accordingly.

• There is a junkyard at the end of the file with some code pieces that you might find useful. If
you drop working code, just put it there. At the moment you'll find:

a) A version of find supporting regular expression. If you prefer this one, just swap with the
other find_in_file() definition above.

b) ...

To Do:

 Resist adding more features! Better think of what can be dropped (like help), slimmed or
cleaned. And obviously bug fixing.

 For Delete Line/Insert Line the kye mapping is now Ctr-X/Ctrl-V. I played a while with Ctr-
Y/Ctrl-Z, which is also kind of natural. And it keeps Ctrl-X free for Delete Char.

 Any suggestions?

