bmp280 error ?

RP2040 based microcontroller boards running MicroPython.
Target audience: MicroPython users with an RP2040 boards.
This does not include conventional Linux-based Raspberry Pi boards.
Post Reply
iceelon
Posts: 30
Joined: Tue Jul 12, 2022 11:42 am

bmp280 error ?

Post by iceelon » Mon Sep 12, 2022 2:39 pm

Hello, a few days ago I received some bmp280 modules and the truth is, I don't know why they don't work.
for now it is connected, it has push resistors and it is a 3.3v device

Code: Select all

Scan i2c bus...
i2c devices found: 1
Decimal address:  118  | Hexa address:  0x76
but when trying to capture the data

Code: Select all

I2C scan result :  [118]
I2C connection successfull
Traceback (most recent call last):
  File "<stdin>", line 22, in <module>
  File "/lib/bmp280.py", line 97, in __init__
  File "/lib/bmp280.py", line 126, in _read
OSError: [Errno 5] EIO

danjperron
Posts: 51
Joined: Thu Dec 27, 2018 11:38 pm
Location: Québec, Canada

Re: bmp280 error ?

Post by danjperron » Tue Sep 13, 2022 12:08 am

without your source code is hard to figure it out.

But I think that you forget to change the I2c address to 0x76 in the library.

By default the bmp280 library is set to 0x77.
When you create bme280 object you need to select the address 0x76.

Code: Select all

i2c=machine.I2C(0,sda=machine.Pin(bme_PinSDA), scl=machine.Pin(bme_PinSCL), freq=100000)    #initializing the I2C method 
bme = bme280.BME280(i2c=i2c,address=0x76)

iceelon
Posts: 30
Joined: Tue Jul 12, 2022 11:42 am

Re: bmp280 error ?

Post by iceelon » Tue Sep 13, 2022 10:27 am

thanks for your help... in principle it is in the address 0x76 which is by default where the class is... thinking about it I found the error... it is silly... it turns out that the bmp280 manufactured after 2021 (by the serial id ) only work at frequencies of 100000 bus, if you lower it after a few readings it gives an error and if you raise it it does not get to read anything giving an error type device does not exist ....

Thanks again and I feel my English

this source for using :)

Code: Select all

from bmp280 import *
from machine import Pin, I2C
import utime
from time import sleep


i2c = I2C(0, sda = Pin(16), scl = Pin(17), freq = 100000)

ERROR = -3 # hPa 

# scan i2c port for available devices
result = I2C.scan(i2c)
print("I2C scan result : ", result) # 118 in decimal is same as 0x76 in hexadecimal
if result != []:
    print("I2C connection successfull")
else:
    print("No devices found !")


# create a BMP 280 object
bmp280_object = BMP280(i2c)

# configure the sensor
# These configuration settings give most accurate values in my case
# tweak them according to your own requirements

bmp280_object.power_mode = BMP280_POWER_NORMAL
bmp280_object.oversample = BMP280_OS_HIGH
bmp280_object.temp_os = BMP280_TEMP_OS_8
bmp280_object.press_os = BMP280_TEMP_OS_4
bmp280_object.standby = BMP280_STANDBY_250
bmp280_object.iir = BMP280_IIR_FILTER_2

print("BMP Object created successfully !")
utime.sleep(2) # change it as per requirement
print("\n")

# Function for calculation altitude from pressure and temperature values
# because altitude() method is not present in the Library

def altitude_HYP(hPa , temperature):
    # Hypsometric Equation (Max Altitude < 11 Km above sea level)
    temperature = temperature
    local_pressure = hPa
    sea_level_pressure = 1013.25 # hPa      
    pressure_ratio = sea_level_pressure/local_pressure # sea level pressure = 1013.25 hPa
    h = (((pressure_ratio**(1/5.257)) - 1) * temperature ) / 0.0065
    return h


# altitude from international barometric formula, given in BMP 180 datasheet
def altitude_IBF(pressure):
    local_pressure = pressure    # Unit : hPa
    sea_level_pressure = 1013.25 # Unit : hPa
    pressure_ratio = local_pressure / sea_level_pressure
    altitude = 44330*(1-(pressure_ratio**(1/5.255)))
    return altitude

  
while True:
    # accquire temperature value in celcius
    temperature_c = bmp280_object.temperature # degree celcius
    
    # convert celcius to kelvin
    temperature_k = temperature_c + 273.15
    
    # accquire pressure value
    pressure = bmp280_object.pressure  # pascal
    
    # convert pascal to hectopascal (hPa)
    # 1 hPa = 100 Pa
    # Therefore 1 Pa = 0.01 hPa
    pressure_hPa = ( pressure * 0.01 ) + ERROR # hPa
    
    # accquire altitude values from HYPSOMETRIC formula
    h = altitude_HYP(pressure_hPa, temperature_k)
    
    # accquire altitude values from International Barometric Formula
    altitude = altitude_IBF(pressure_hPa)
    press = "{:.2f}".format(pressure_hPa)
    h_alti = "{:.2f}".format(h)
    i_alti = "{:.2f}".format(altitude)
    print("Temperature : ",temperature_c," Degree Celcius")
    print("Pressure : ",pressure," Pascal (Pa)")
    print("Pressure : ",press," hectopascal (hPa) or millibar (mb)")
    print("Altitude (Hypsometric Formula) : ", h_alti ," meter")
    print("Altitude (International Barometric Formula) : ", i_alti ," meter")
    print("\n")
    
and driver ....using of # Author David Stenwall Wahlund (david at dafnet.se)

Code: Select all

from micropython import const
from ustruct import unpack as unp

# Author David Stenwall Wahlund (david at dafnet.se)

# Power Modes
BMP280_POWER_SLEEP = const(0)
BMP280_POWER_FORCED = const(1)
BMP280_POWER_NORMAL = const(3)

BMP280_SPI3W_ON = const(1)
BMP280_SPI3W_OFF = const(0)

BMP280_TEMP_OS_SKIP = const(0)
BMP280_TEMP_OS_1 = const(1)
BMP280_TEMP_OS_2 = const(2)
BMP280_TEMP_OS_4 = const(3)
BMP280_TEMP_OS_8 = const(4)
BMP280_TEMP_OS_16 = const(5)

BMP280_PRES_OS_SKIP = const(0)
BMP280_PRES_OS_1 = const(1)
BMP280_PRES_OS_2 = const(2)
BMP280_PRES_OS_4 = const(3)
BMP280_PRES_OS_8 = const(4)
BMP280_PRES_OS_16 = const(5)

# Standby settings in ms
BMP280_STANDBY_0_5 = const(0)
BMP280_STANDBY_62_5 = const(1)
BMP280_STANDBY_125 = const(2)
BMP280_STANDBY_250 = const(3)
BMP280_STANDBY_500 = const(4)
BMP280_STANDBY_1000 = const(5)
BMP280_STANDBY_2000 = const(6)
BMP280_STANDBY_4000 = const(7)

# IIR Filter setting
BMP280_IIR_FILTER_OFF = const(0)
BMP280_IIR_FILTER_2 = const(1)
BMP280_IIR_FILTER_4 = const(2)
BMP280_IIR_FILTER_8 = const(3)
BMP280_IIR_FILTER_16 = const(4)

# Oversampling setting
BMP280_OS_ULTRALOW = const(0)
BMP280_OS_LOW = const(1)
BMP280_OS_STANDARD = const(2)
BMP280_OS_HIGH = const(3)
BMP280_OS_ULTRAHIGH = const(4)

# Oversampling matrix
# (PRESS_OS, TEMP_OS, sample time in ms)
_BMP280_OS_MATRIX = [
    [BMP280_PRES_OS_1, BMP280_TEMP_OS_1, 7],
    [BMP280_PRES_OS_2, BMP280_TEMP_OS_1, 9],
    [BMP280_PRES_OS_4, BMP280_TEMP_OS_1, 14],
    [BMP280_PRES_OS_8, BMP280_TEMP_OS_1, 23],
    [BMP280_PRES_OS_16, BMP280_TEMP_OS_2, 44]
]

# Use cases
BMP280_CASE_HANDHELD_LOW = const(0)
BMP280_CASE_HANDHELD_DYN = const(1)
BMP280_CASE_WEATHER = const(2)
BMP280_CASE_FLOOR = const(3)
BMP280_CASE_DROP = const(4)
BMP280_CASE_INDOOR = const(5)

_BMP280_CASE_MATRIX = [
    [BMP280_POWER_NORMAL, BMP280_OS_ULTRAHIGH, BMP280_IIR_FILTER_4, BMP280_STANDBY_62_5],
    [BMP280_POWER_NORMAL, BMP280_OS_STANDARD, BMP280_IIR_FILTER_16, BMP280_STANDBY_0_5],
    [BMP280_POWER_FORCED, BMP280_OS_ULTRALOW, BMP280_IIR_FILTER_OFF, BMP280_STANDBY_0_5],
    [BMP280_POWER_NORMAL, BMP280_OS_STANDARD, BMP280_IIR_FILTER_4, BMP280_STANDBY_125],
    [BMP280_POWER_NORMAL, BMP280_OS_LOW, BMP280_IIR_FILTER_OFF, BMP280_STANDBY_0_5],
    [BMP280_POWER_NORMAL, BMP280_OS_ULTRAHIGH, BMP280_IIR_FILTER_16, BMP280_STANDBY_0_5]
]

_BMP280_REGISTER_ID = const(0xD0)
_BMP280_REGISTER_RESET = const(0xE0)
_BMP280_REGISTER_STATUS = const(0xF3)
_BMP280_REGISTER_CONTROL = const(0xF4)
_BMP280_REGISTER_CONFIG = const(0xF5)  # IIR filter config

_BMP280_REGISTER_DATA = const(0xF7)


class BMP280:
    def __init__(self, i2c_bus, addr=0x76, use_case=BMP280_CASE_HANDHELD_DYN):
        self._bmp_i2c = i2c_bus
        self._i2c_addr = addr

        # read calibration data
        # < little-endian
        # H unsigned short
        # h signed short
        self._T1 = unp('<H', self._read(0x88, 2))[0]
        self._T2 = unp('<h', self._read(0x8A, 2))[0]
        self._T3 = unp('<h', self._read(0x8C, 2))[0]
        self._P1 = unp('<H', self._read(0x8E, 2))[0]
        self._P2 = unp('<h', self._read(0x90, 2))[0]
        self._P3 = unp('<h', self._read(0x92, 2))[0]
        self._P4 = unp('<h', self._read(0x94, 2))[0]
        self._P5 = unp('<h', self._read(0x96, 2))[0]
        self._P6 = unp('<h', self._read(0x98, 2))[0]
        self._P7 = unp('<h', self._read(0x9A, 2))[0]
        self._P8 = unp('<h', self._read(0x9C, 2))[0]
        self._P9 = unp('<h', self._read(0x9E, 2))[0]

        # output raw
        self._t_raw = 0
        self._t_fine = 0
        self._t = 0

        self._p_raw = 0
        self._p = 0

        self.read_wait_ms = 0  # interval between forced measure and readout
        self._new_read_ms = 200  # interval between
        self._last_read_ts = 0

        if use_case is None:
            self.use_case(use_case)

    def _read(self, addr, size=1):
        return self._bmp_i2c.readfrom_mem(self._i2c_addr, addr, size)

    def _write(self, addr, b_arr):
        if not type(b_arr) is bytearray:
            b_arr = bytearray([b_arr])
        return self._bmp_i2c.writeto_mem(self._i2c_addr, addr, b_arr)

    def _gauge(self):
        # TODO limit new reads
        # read all data at once (as by spec)
        d = self._read(_BMP280_REGISTER_DATA, 6)

        self._p_raw = (d[0] << 12) + (d[1] << 4) + (d[2] >> 4)
        self._t_raw = (d[3] << 12) + (d[4] << 4) + (d[5] >> 4)

        self._t_fine = 0
        self._t = 0
        self._p = 0

    def reset(self):
        self._write(_BMP280_REGISTER_RESET, 0xB6)

    def load_test_calibration(self):
        self._T1 = 27504
        self._T2 = 26435
        self._T3 = -1000
        self._P1 = 36477
        self._P2 = -10685
        self._P3 = 3024
        self._P4 = 2855
        self._P5 = 140
        self._P6 = -7
        self._P7 = 15500
        self._P8 = -14600
        self._P9 = 6000

    def load_test_data(self):
        self._t_raw = 519888
        self._p_raw = 415148

    def print_calibration(self):
        print("T1: {} {}".format(self._T1, type(self._T1)))
        print("T2: {} {}".format(self._T2, type(self._T2)))
        print("T3: {} {}".format(self._T3, type(self._T3)))
        print("P1: {} {}".format(self._P1, type(self._P1)))
        print("P2: {} {}".format(self._P2, type(self._P2)))
        print("P3: {} {}".format(self._P3, type(self._P3)))
        print("P4: {} {}".format(self._P4, type(self._P4)))
        print("P5: {} {}".format(self._P5, type(self._P5)))
        print("P6: {} {}".format(self._P6, type(self._P6)))
        print("P7: {} {}".format(self._P7, type(self._P7)))
        print("P8: {} {}".format(self._P8, type(self._P8)))
        print("P9: {} {}".format(self._P9, type(self._P9)))

    def _calc_t_fine(self):
        # From datasheet page 22
        self._gauge()
        if self._t_fine == 0:
            var1 = (((self._t_raw >> 3) - (self._T1 << 1)) * self._T2) >> 11
            var2 = (((((self._t_raw >> 4) - self._T1)
                      * ((self._t_raw >> 4)
                         - self._T1)) >> 12)
                    * self._T3) >> 14
            self._t_fine = var1 + var2

    @property
    def temperature(self):
        self._calc_t_fine()
        if self._t == 0:
            self._t = ((self._t_fine * 5 + 128) >> 8) / 100.
        return self._t

    @property
    def pressure(self):
        # From datasheet page 22
        self._calc_t_fine()
        if self._p == 0:
            var1 = self._t_fine - 128000
            var2 = var1 * var1 * self._P6
            var2 = var2 + ((var1 * self._P5) << 17)
            var2 = var2 + (self._P4 << 35)
            var1 = ((var1 * var1 * self._P3) >> 8) + ((var1 * self._P2) << 12)
            var1 = (((1 << 47) + var1) * self._P1) >> 33

            if var1 == 0:
                return 0

            p = 1048576 - self._p_raw
            p = int((((p << 31) - var2) * 3125) / var1)
            var1 = (self._P9 * (p >> 13) * (p >> 13)) >> 25
            var2 = (self._P8 * p) >> 19

            p = ((p + var1 + var2) >> 8) + (self._P7 << 4)
            self._p = p / 256.0
        return self._p

    def _write_bits(self, address, value, length, shift=0):
        d = self._read(address)[0]
        m = int('1' * length, 2) << shift
        d &= ~m
        d |= m & value << shift
        self._write(address, d)

    def _read_bits(self, address, length, shift=0):
        d = self._read(address)[0]
        return d >> shift & int('1' * length, 2)

    @property
    def standby(self):
        return self._read_bits(_BMP280_REGISTER_CONFIG, 3, 5)

    @standby.setter
    def standby(self, v):
        assert 0 <= v <= 7
        self._write_bits(_BMP280_REGISTER_CONFIG, v, 3, 5)

    @property
    def iir(self):
        return self._read_bits(_BMP280_REGISTER_CONFIG, 3, 2)

    @iir.setter
    def iir(self, v):
        assert 0 <= v <= 4
        self._write_bits(_BMP280_REGISTER_CONFIG, v, 3, 2)

    @property
    def spi3w(self):
        return self._read_bits(_BMP280_REGISTER_CONFIG, 1)

    @spi3w.setter
    def spi3w(self, v):
        assert v in (0, 1)
        self._write_bits(_BMP280_REGISTER_CONFIG, v, 1)

    @property
    def temp_os(self):
        return self._read_bits(_BMP280_REGISTER_CONTROL, 3, 5)

    @temp_os.setter
    def temp_os(self, v):
        assert 0 <= v <= 5
        self._write_bits(_BMP280_REGISTER_CONTROL, v, 3, 5)

    @property
    def press_os(self):
        return self._read_bits(_BMP280_REGISTER_CONTROL, 3, 2)

    @press_os.setter
    def press_os(self, v):
        assert 0 <= v <= 5
        self._write_bits(_BMP280_REGISTER_CONTROL, v, 3, 2)

    @property
    def power_mode(self):
        return self._read_bits(_BMP280_REGISTER_CONTROL, 2)

    @power_mode.setter
    def power_mode(self, v):
        assert 0 <= v <= 3
        self._write_bits(_BMP280_REGISTER_CONTROL, v, 2)

    @property
    def is_measuring(self):
        return bool(self._read_bits(_BMP280_REGISTER_STATUS, 1, 3))

    @property
    def is_updating(self):
        return bool(self._read_bits(_BMP280_REGISTER_STATUS, 1))

    @property
    def chip_id(self):
        return self._read(_BMP280_REGISTER_ID, 2)

    @property
    def in_normal_mode(self):
        return self.power_mode == BMP280_POWER_NORMAL

    def force_measure(self):
        self.power_mode = BMP280_POWER_FORCED

    def normal_measure(self):
        self.power_mode = BMP280_POWER_NORMAL

    def sleep(self):
        self.power_mode = BMP280_POWER_SLEEP

    def use_case(self, uc):
        assert 0 <= uc <= 5
        pm, oss, iir, sb = _BMP280_CASE_MATRIX[uc]
        t_os, p_os, self.read_wait_ms = _BMP280_OS_MATRIX[oss]
        self._write(_BMP280_REGISTER_CONFIG, (iir << 2) + (sb << 5))
        self._write(_BMP280_REGISTER_CONTROL, pm + (p_os << 2) + (t_os << 5))

    def oversample(self, oss):
        assert 0 <= oss <= 4
        t_os, p_os, self.read_wait_ms = _BMP280_OS_MATRIX[oss]
        self._write_bits(_BMP280_REGISTER_CONTROL, p_os + (t_os << 3), 2)
        
        

Post Reply