Same hardware: miniblink runs, but micropython hangs.

C programming, build, interpreter/VM.
Target audience: MicroPython Developers.
Post Reply
User avatar
jgriessen
Posts: 191
Joined: Mon Sep 29, 2014 4:20 pm
Contact:

Same hardware: miniblink runs, but micropython hangs.

Post by jgriessen » Wed Apr 11, 2018 7:31 pm

My new PYFLEX_F401 platform uses a STM32F401CE with 512k flash similar to the G30TH platform that works well.
The hardware has the HSE crystal at 16MHz instead of 12MHz on the G30TH. The crystal runs (verified with active probe). The package is QFN 48 pins instead of LQFP 64 pins. The PYFLEX_F401 VDD voltage is 3.0V instead of 3.3V on the G30TH.

My method of loading code to the new platform is using openocd with SWDIO, SWDCLK, GND wired between the modules -- no USB yet.
The PYFLEX_F401 is self powered.

I can compile miniblink https://github.com/karlp/libopencm3-miniblink for different GPIOs to toggle and I have verified most of my hardware pins working.

So using the same setup, micropython is not booting to do a blink test. Since USB is not available, and SWD was already hooked up, I modified main.c to load frozen modules and so far the output seems reasonable, but no blinking. The history of that is in this thread: viewtopic.php?f=12&t=4596&start=30

Is trying to run frozen too tricky? Should I switch to boot from serial port to debug my lack of REPL or blinky results?
Will anyone else besides Dave Hylands review my main.c intended to run frozen code? The modified main.c has #define USE_FROZEN_BOOT_AND_MAIN sections of code down near the end.

Code: Select all

/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/runtime.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/mphal.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"

#include "systick.h"
#include "pendsv.h"
#include "pybthread.h"
#include "gccollect.h"
#include "modmachine.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#include "extint.h"
#include "usrsw.h"
#include "usb.h"
#include "rtc.h"
#include "storage.h"
#include "sdcard.h"
#include "rng.h"
#include "accel.h"
#include "servo.h"
#include "dac.h"
#include "can.h"
#include "modnetwork.h"

void SystemClock_Config(void);

pyb_thread_t pyb_thread_main;
fs_user_mount_t fs_user_mount_flash;

void flash_error(int n) {
    for (int i = 0; i < n; i++) {
        led_state(PYB_LED_RED, 1);
        led_state(PYB_LED_GREEN, 0);
        mp_hal_delay_ms(250);
        led_state(PYB_LED_RED, 0);
        led_state(PYB_LED_GREEN, 1);
        mp_hal_delay_ms(250);
    }
    led_state(PYB_LED_GREEN, 0);
}

void NORETURN __fatal_error(const char *msg) {
    for (volatile uint delay = 0; delay < 10000000; delay++) {
    }
    led_state(1, 1);
    led_state(2, 1);
    led_state(3, 1);
    led_state(4, 1);
    mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
    mp_hal_stdout_tx_strn(msg, strlen(msg));
    for (uint i = 0;;) {
        led_toggle(((i++) & 3) + 1);
        for (volatile uint delay = 0; delay < 10000000; delay++) {
        }
        if (i >= 16) {
            // to conserve power
            __WFI();
        }
    }
}

void nlr_jump_fail(void *val) {
    printf("FATAL: uncaught exception %p\n", val);
    mp_obj_print_exception(&mp_plat_print, (mp_obj_t)val);
    __fatal_error("");
}

#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
    (void)func;
    printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
    __fatal_error("");
}
#endif

STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
    };

    if (MP_OBJ_IS_STR(pos_args[0])) {
        MP_STATE_PORT(pyb_config_main) = pos_args[0];

        // parse args
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
        MP_STATE_VM(mp_optimise_value) = args[0].u_int;
    }
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);

static const char fresh_boot_py[] =
"# boot.py -- run on boot-up\r\n"
"# can run arbitrary Python, but best to keep it minimal\r\n"
"\r\n"
"import machine\r\n"
"import pyb\r\n"
"#pyb.main('main.py') # main script to run after this one\r\n"
#if MICROPY_HW_ENABLE_USB
"#pyb.usb_mode('VCP+MSC') # act as a serial and a storage device\r\n"
"#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse\r\n"
#endif
;

static const char fresh_main_py[] =
"# main.py -- put your code here!\r\n"
;

static const char fresh_pybcdc_inf[] =
#include "genhdr/pybcdc_inf.h"
;

static const char fresh_readme_txt[] =
"This is a MicroPython board\r\n"
"\r\n"
"You can get started right away by writing your Python code in 'main.py'.\r\n"
"\r\n"
"For a serial prompt:\r\n"
" - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
"   then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
"   Then use a terminal program like Hyperterminal or putty.\r\n"
" - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
" - Linux: use the command: screen /dev/ttyACM0\r\n"
"\r\n"
"Please visit http://micropython.org/help/ for further help.\r\n"
;

// avoid inlining to avoid stack usage within main()
MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) {
    // init the vfs object
    fs_user_mount_t *vfs_fat = &fs_user_mount_flash;
    vfs_fat->flags = 0;
    pyb_flash_init_vfs(vfs_fat);

    // try to mount the flash
    FRESULT res = f_mount(&vfs_fat->fatfs);

    if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
        // no filesystem, or asked to reset it, so create a fresh one

        // LED on to indicate creation of LFS
        led_state(PYB_LED_GREEN, 1);
        uint32_t start_tick = HAL_GetTick();

        uint8_t working_buf[_MAX_SS];
        res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf));
        if (res == FR_OK) {
            // success creating fresh LFS
        } else {
            printf("PYB: can't create flash filesystem\n");
            return false;
        }

        // set label
        f_setlabel(&vfs_fat->fatfs, "pybflash");

        // create empty main.py
        FIL fp;
        f_open(&vfs_fat->fatfs, &fp, "/main.py", FA_WRITE | FA_CREATE_ALWAYS);
        UINT n;
        f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
        // TODO check we could write n bytes
        f_close(&fp);

        // create .inf driver file
        f_open(&vfs_fat->fatfs, &fp, "/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
        f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
        f_close(&fp);

        // create readme file
        f_open(&vfs_fat->fatfs, &fp, "/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
        f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
        f_close(&fp);

        // keep LED on for at least 200ms
        sys_tick_wait_at_least(start_tick, 200);
        led_state(PYB_LED_GREEN, 0);
    } else if (res == FR_OK) {
        // mount sucessful
    } else {
    fail:
        printf("PYB: can't mount flash\n");
        return false;
    }

    // mount the flash device (there should be no other devices mounted at this point)
    // we allocate this structure on the heap because vfs->next is a root pointer
    mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
    if (vfs == NULL) {
        goto fail;
    }
    vfs->str = "/flash";
    vfs->len = 6;
    vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
    vfs->next = NULL;
    MP_STATE_VM(vfs_mount_table) = vfs;

    // The current directory is used as the boot up directory.
    // It is set to the internal flash filesystem by default.
    MP_STATE_PORT(vfs_cur) = vfs;

    // Make sure we have a /flash/boot.py.  Create it if needed.
    FILINFO fno;
    res = f_stat(&vfs_fat->fatfs, "/boot.py", &fno);
    if (res != FR_OK) {
        // doesn't exist, create fresh file

        // LED on to indicate creation of boot.py
        led_state(PYB_LED_GREEN, 1);
        uint32_t start_tick = HAL_GetTick();

        FIL fp;
        f_open(&vfs_fat->fatfs, &fp, "/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
        UINT n;
        f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
        // TODO check we could write n bytes
        f_close(&fp);

        // keep LED on for at least 200ms
        sys_tick_wait_at_least(start_tick, 200);
        led_state(PYB_LED_GREEN, 0);
    }

    return true;
}

#if MICROPY_HW_HAS_SDCARD
STATIC bool init_sdcard_fs(void) {
    bool first_part = true;
    for (int part_num = 1; part_num <= 4; ++part_num) {
        // create vfs object
        fs_user_mount_t *vfs_fat = m_new_obj_maybe(fs_user_mount_t);
        mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
        if (vfs == NULL || vfs_fat == NULL) {
            break;
        }
        vfs_fat->flags = FSUSER_FREE_OBJ;
        sdcard_init_vfs(vfs_fat, part_num);

        // try to mount the partition
        FRESULT res = f_mount(&vfs_fat->fatfs);

        if (res != FR_OK) {
            // couldn't mount
            m_del_obj(fs_user_mount_t, vfs_fat);
            m_del_obj(mp_vfs_mount_t, vfs);
        } else {
            // mounted via FatFs, now mount the SD partition in the VFS
            if (first_part) {
                // the first available partition is traditionally called "sd" for simplicity
                vfs->str = "/sd";
                vfs->len = 3;
            } else {
                // subsequent partitions are numbered by their index in the partition table
                if (part_num == 2) {
                    vfs->str = "/sd2";
                } else if (part_num == 2) {
                    vfs->str = "/sd3";
                } else {
                    vfs->str = "/sd4";
                }
                vfs->len = 4;
            }
            vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
            vfs->next = NULL;
            for (mp_vfs_mount_t **m = &MP_STATE_VM(vfs_mount_table);; m = &(*m)->next) {
                if (*m == NULL) {
                    *m = vfs;
                    break;
                }
            }

            #if MICROPY_HW_ENABLE_USB
            if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
                // if no USB MSC medium is selected then use the SD card
                pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
            }
            #endif

            #if MICROPY_HW_ENABLE_USB
            // only use SD card as current directory if that's what the USB medium is
            if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
            #endif
            {
                if (first_part) {
                    // use SD card as current directory
                    MP_STATE_PORT(vfs_cur) = vfs;
                }
            }
            first_part = false;
        }
    }

    if (first_part) {
        printf("PYB: can't mount SD card\n");
        return false;
    } else {
        return true;
    }
}
#endif

#if !MICROPY_HW_USES_BOOTLOADER
STATIC uint update_reset_mode(uint reset_mode) {
#if MICROPY_HW_HAS_SWITCH
    if (switch_get()) {

        // The original method used on the pyboard is appropriate if you have 2
        // or more LEDs.
#if defined(MICROPY_HW_LED2)
        for (uint i = 0; i < 3000; i++) {
            if (!switch_get()) {
                break;
            }
            mp_hal_delay_ms(20);
            if (i % 30 == 29) {
                if (++reset_mode > 3) {
                    reset_mode = 1;
                }
                led_state(2, reset_mode & 1);
                led_state(3, reset_mode & 2);
                led_state(4, reset_mode & 4);
            }
        }
        // flash the selected reset mode
        for (uint i = 0; i < 6; i++) {
            led_state(2, 0);
            led_state(3, 0);
            led_state(4, 0);
            mp_hal_delay_ms(50);
            led_state(2, reset_mode & 1);
            led_state(3, reset_mode & 2);
            led_state(4, reset_mode & 4);
            mp_hal_delay_ms(50);
        }
        mp_hal_delay_ms(400);

#elif defined(MICROPY_HW_LED1)

        // For boards with only a single LED, we'll flash that LED the
        // appropriate number of times, with a pause between each one
        for (uint i = 0; i < 10; i++) {
            led_state(1, 0);
            for (uint j = 0; j < reset_mode; j++) {
                if (!switch_get()) {
                    break;
                }
                led_state(1, 1);
                mp_hal_delay_ms(100);
                led_state(1, 0);
                mp_hal_delay_ms(200);
            }
            mp_hal_delay_ms(400);
            if (!switch_get()) {
                break;
            }
            if (++reset_mode > 3) {
                reset_mode = 1;
            }
        }
        // Flash the selected reset mode
        for (uint i = 0; i < 2; i++) {
            for (uint j = 0; j < reset_mode; j++) {
                led_state(1, 1);
                mp_hal_delay_ms(100);
                led_state(1, 0);
                mp_hal_delay_ms(200);
            }
            mp_hal_delay_ms(400);
        }
#else
#error Need a reset mode update method
#endif
    }
#endif
    return reset_mode;
}
#endif

void stm32_main(uint32_t reset_mode) {
    // TODO disable JTAG

    /* STM32F4xx HAL library initialization:
         - Configure the Flash prefetch, instruction and Data caches
         - Configure the Systick to generate an interrupt each 1 msec
         - Set NVIC Group Priority to 4
         - Global MSP (MCU Support Package) initialization
       */
    HAL_Init();

    // set the system clock to be HSE
    SystemClock_Config();

    // enable GPIO clocks
    __HAL_RCC_GPIOA_CLK_ENABLE();
    __HAL_RCC_GPIOB_CLK_ENABLE();
    __HAL_RCC_GPIOC_CLK_ENABLE();
    __HAL_RCC_GPIOD_CLK_ENABLE();

    #if defined(STM32F4) ||  defined(STM32F7)
        #if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
        // The STM32F746 doesn't really have CCM memory, but it does have DTCM,
        // which behaves more or less like normal SRAM.
        __HAL_RCC_DTCMRAMEN_CLK_ENABLE();
        #elif defined(CCMDATARAM_BASE)
        // enable the CCM RAM
        __HAL_RCC_CCMDATARAMEN_CLK_ENABLE();
        #endif
    #elif defined(STM32H7)
        // Enable D2 SRAM1/2/3 clocks.
        __HAL_RCC_D2SRAM1_CLK_ENABLE();
        __HAL_RCC_D2SRAM2_CLK_ENABLE();
        __HAL_RCC_D2SRAM3_CLK_ENABLE();
    #endif


    #if defined(MICROPY_BOARD_EARLY_INIT)
    MICROPY_BOARD_EARLY_INIT();
    #endif

    // basic sub-system init
    #if MICROPY_PY_THREAD
    pyb_thread_init(&pyb_thread_main);
    #endif
    pendsv_init();
    led_init();
    #if MICROPY_HW_HAS_SWITCH
    switch_init0();
    #endif
    machine_init();
    #if MICROPY_HW_ENABLE_RTC
    rtc_init_start(false);
    #endif
    spi_init0();
    #if MICROPY_HW_ENABLE_HW_I2C
    i2c_init0();
    #endif
    #if MICROPY_HW_HAS_SDCARD
    sdcard_init();
    #endif
    storage_init();

soft_reset:

#if defined(MICROPY_HW_LED2)
    led_state(1, 0);
    led_state(2, 1);
#else
    led_state(1, 1);
    led_state(2, 0);
#endif
    led_state(3, 0);
    led_state(4, 0);

    #if !MICROPY_HW_USES_BOOTLOADER
    // check if user switch held to select the reset mode
    reset_mode = update_reset_mode(1);
    #endif

    // Python threading init
    #if MICROPY_PY_THREAD
    mp_thread_init();
    #endif

    // Stack limit should be less than real stack size, so we have a chance
    // to recover from limit hit.  (Limit is measured in bytes.)
    // Note: stack control relies on main thread being initialised above
    mp_stack_set_top(&_estack);
    mp_stack_set_limit((char*)&_estack - (char*)&_heap_end - 1024);

    // GC init
    gc_init(&_heap_start, &_heap_end);

    #if MICROPY_ENABLE_PYSTACK
    static mp_obj_t pystack[384];
    mp_pystack_init(pystack, &pystack[384]);
    #endif

    // MicroPython init
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
    mp_obj_list_init(mp_sys_argv, 0);

    // Initialise low-level sub-systems.  Here we need to very basic things like
    // zeroing out memory and resetting any of the sub-systems.  Following this
    // we can run Python scripts (eg boot.py), but anything that is configurable
    // by boot.py must be set after boot.py is run.

    readline_init0();
    pin_init0();
    extint_init0();
    timer_init0();
    uart_init0();

    // Define MICROPY_HW_UART_REPL to be PYB_UART_6 and define
    // MICROPY_HW_UART_REPL_BAUD in your mpconfigboard.h file if you want a
    // REPL on a hardware UART as well as on USB VCP
#if defined(MICROPY_HW_UART_REPL)
    {
        mp_obj_t args[2] = {
            MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL),
            MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL_BAUD),
        };
        MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
    }
#else
    MP_STATE_PORT(pyb_stdio_uart) = NULL;
#endif

#if MICROPY_HW_ENABLE_CAN
    can_init0();
#endif

    #if MICROPY_HW_ENABLE_USB
    pyb_usb_init0();
    #endif

    // Initialise the local flash filesystem.
    // Create it if needed, mount in on /flash, and set it as current dir.
    bool mounted_flash = init_flash_fs(reset_mode);

    bool mounted_sdcard = false;
#if MICROPY_HW_HAS_SDCARD
    // if an SD card is present then mount it on /sd/
    if (sdcard_is_present()) {
        // if there is a file in the flash called "SKIPSD", then we don't mount the SD card
        if (!mounted_flash || f_stat(&fs_user_mount_flash.fatfs, "/SKIPSD", NULL) != FR_OK) {
            mounted_sdcard = init_sdcard_fs();
        }
    }
#endif

    #if MICROPY_HW_ENABLE_USB
    // if the SD card isn't used as the USB MSC medium then use the internal flash
    if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
        pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
    }
    #endif

    // set sys.path based on mounted filesystems (/sd is first so it can override /flash)
    if (mounted_sdcard) {
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
    }
    if (mounted_flash) {
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
    }

    // reset config variables; they should be set by boot.py
    MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;

    // run boot.py, if it exists
    // TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
    if (reset_mode == 1 || reset_mode == 3) {
        const char *boot_py = "boot.py";
#define USE_FROZEN_BOOT_AND_MAIN 1
#if USE_FROZEN_BOOT_AND_MAIN
        pyexec_frozen_module(boot_py);
#else
        mp_import_stat_t stat = mp_import_stat(boot_py);
        if (stat == MP_IMPORT_STAT_FILE) {
            int ret = pyexec_file(boot_py);
            if (ret & PYEXEC_FORCED_EXIT) {
                goto soft_reset_exit;
            }
            if (!ret) {
                flash_error(4);
            }
        }
#endif
    }

    // turn boot-up LEDs off
#if !defined(MICROPY_HW_LED2)
    // If there is only one LED on the board then it's used to signal boot-up
    // and so we turn it off here.  Otherwise LED(1) is used to indicate dirty
    // flash cache and so we shouldn't change its state.
    led_state(1, 0);
#endif
    led_state(2, 0);
    led_state(3, 0);
    led_state(4, 0);

    // Now we initialise sub-systems that need configuration from boot.py,
    // or whose initialisation can be safely deferred until after running
    // boot.py.

    #if MICROPY_HW_ENABLE_USB
    // init USB device to default setting if it was not already configured
    if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
        pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
    }
    #endif

#if MICROPY_HW_HAS_MMA7660
    // MMA accel: init and reset
    accel_init();
#endif

#if MICROPY_HW_ENABLE_SERVO
    // servo
    servo_init();
#endif

#if MICROPY_HW_ENABLE_DAC
    // DAC
    dac_init();
#endif

#if MICROPY_PY_NETWORK
    mod_network_init();
#endif

    // At this point everything is fully configured and initialised.

    // Run the main script from the current directory.
    if ((reset_mode == 1 || reset_mode == 3) && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
        const char *main_py;
        if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
            main_py = "main.py";
        } else {
            main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
        }
#if USE_FROZEN_BOOT_AND_MAIN
        pyexec_frozen_module(main_py);
            int ret = pyexec_file(main_py);
            if (ret & PYEXEC_FORCED_EXIT) {
                goto soft_reset_exit;
            }
#else
        mp_import_stat_t stat = mp_import_stat(main_py);
        if (stat == MP_IMPORT_STAT_FILE) {
            int ret = pyexec_file(main_py);
            if (ret & PYEXEC_FORCED_EXIT) {
                goto soft_reset_exit;
            }
            if (!ret) {
                flash_error(3);
            }
        }
#endif
    }

    // Main script is finished, so now go into REPL mode.
    // The REPL mode can change, or it can request a soft reset.
    for (;;) {
        if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
            if (pyexec_raw_repl() != 0) {
                break;
            }
        } else {
            if (pyexec_friendly_repl() != 0) {
                break;
            }
        }
    }

soft_reset_exit:

    // soft reset

    printf("PYB: sync filesystems\n");
    storage_flush();

    printf("PYB: soft reboot\n");
    timer_deinit();
    uart_deinit();
#if MICROPY_HW_ENABLE_CAN
    can_deinit();
#endif
    machine_deinit();

    #if MICROPY_PY_THREAD
    pyb_thread_deinit();
    #endif

    goto soft_reset;
}
Here is boot.py in the frozen directory:

Code: Select all

# boot.py -- run on boot-up
# can run arbitrary Python, but best to keep it minimal

import machine
import pyb
pyb.main('pintest.py')
Here is pintest.py in the frozen directory:

Code: Select all

import pyb

# Define pins so they can be set with a pin reference like:  pin10.value(1) on the fly.
pinA5 = pyb.Pin('PA5', pyb.Pin.OUT_PP)
pinB0 = pyb.Pin('PB0', pyb.Pin.OUT_PP)
pinB1 = pyb.Pin('PB1', pyb.Pin.OUT_PP)
pinB2 = pyb.Pin('PB2', pyb.Pin.OUT_PP)
pinB3 = pyb.Pin('PB3', pyb.Pin.OUT_PP)
pinB4 = pyb.Pin('PB4', pyb.Pin.OUT_PP)
pinB5 = pyb.Pin('PB5', pyb.Pin.OUT_PP)
pinB6 = pyb.Pin('PB6', pyb.Pin.OUT_PP)
pinB7 = pyb.Pin('PB7', pyb.Pin.OUT_PP)
pinB8 = pyb.Pin('PB8', pyb.Pin.OUT_PP)
pinB10 = pyb.Pin('PB10', pyb.Pin.OUT_PP)
pinB13 = pyb.Pin('PB13', pyb.Pin.OUT_PP)
pinB14 = pyb.Pin('PB14', pyb.Pin.OUT_PP)
pinB15 = pyb.Pin('PB15', pyb.Pin.OUT_PP)

pinA5.value(1)
pinB5.value(0)
pinB8.value(1)
pinB9.value(0)
while True:
    pinA5.toggle()
    pinB5.toggle()
    pinB0.toggle()
    pinB1.toggle()
    pinB8.toggle()
    pinB9.toggle()
    pyb.delay(200)
If you can spot anything wrong, I'd appreciate knowing about it. Now I'm going back to testing that frozen code can be compiled and loaded to a known good G30TH module using DFU -- then if that works, the SWD pins loading method must be doing something wrong, (but it works for miniblink!). I'd rather not tear up my setup for loading code that is proven to work to verify the hardware with miniblink, since each time you rip up and rearrange wiring to teeny circuits you risk killing something.
John Griessen blog.kitmatic.com

User avatar
jgriessen
Posts: 191
Joined: Mon Sep 29, 2014 4:20 pm
Contact:

Re: Same hardware: miniblink runs, but micropython hangs.

Post by jgriessen » Wed Apr 11, 2018 8:50 pm

going back to testing that frozen code can be compiled and loaded to a known good G30TH module using DFU
That did not work. So far no luck getting frozen code to run with a micropython compile of git latest. That is where I am looking for problems now -- in getting a good compile, which probably means using v1.9.3 instead of git head. Also use the modified main.c with 1.9.3 and try again.
John Griessen blog.kitmatic.com

User avatar
jgriessen
Posts: 191
Joined: Mon Sep 29, 2014 4:20 pm
Contact:

Re: Same hardware: miniblink runs, but micropython hangs.

Post by jgriessen » Wed Apr 11, 2018 9:25 pm

Is there a version of lib/stm32lib that should be used along with v1.9.3?
lib/stm32lib seems gradually changing. Maybe the latest is still backward compatible with v1.9.3 micrpython?

could not get frozen to work on G30TH, but ordinary USB/serial REPL works with v1.9.3 on G30TH. (with latest submodule updated lib/stm32lib).
John Griessen blog.kitmatic.com

Post Reply